报告题目:Chain theorems of difference versions of 4-connected graphs
报告专家: 覃城阜副教授(南宁师范大学)
报告时间: 2019年8月19日(周一)15:30-17:00
报告地点:东校区8教400
欢迎广大师生光临!
摘要:In this talk, we summarize some results of differences version of 4-connected graph.For any two graphsH andG, an (G, H)-chain is a sequence G1, G2, … ,Gk of graphs such that G@ G1≥mG2 ≥m…≥mGk−1≥mGk@H.Let C = {C2n:n≥ 5} and let L = {G : G is the line graph of aninternally 4-connected cubic graph}. A classical result of Martinov states that every 4-connected graphG,there is a (G, H)-chain forHÎC∪L.We refine the result of Martinov by showing that there is a(G, C25) if G is nonplanar, and GÏC∪L and there is a (G, C26) if G is planar and GÏC∪L. Further,we generalize the result of Martinov to quasi 4-onnected graphs and weakly 4-connected graphs. This is joint work with GuoliDing(LSU).
专家简介:覃城阜,理学博士,南宁师范大学副教授。2010年6月毕业于厦门大学数学科学学院,获理学博士学位。2013年应邀在日本图论会议做大会报告,2015年3月至2016年3月在美国路易斯安那州立大学(LSU)进行学术访问。目前主要从事图的连通性相关研究,在低阶连通图的结构方面获得了较丰富和深入的结果,在Journal of Combinatorial theory, Ser.B, Discrete Mathematics,Graphs and Combinatorics, Czechoslovak Mathematical Journal, Australasian journal of combinatorics, Information Processing Letters等国际主流学术刊物上发表学术论文20余篇。主持国家自然科学基金2项,国家数学天元基金1项,广西自然科学基金2项。